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ABSTRACT 
 
An automatic fringe tracking system has been developed and implemented at the Infrared Optical Telescope Array 
(IOTA). In testing during May 2002, the system successfully minimized the optical path differences (OPDs) for all three 
baselines at IOTA. Based on sliding window discrete Fourier transform (DFT) calculations that were optimized for 
computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on 
off-line data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating 
system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms), using the 
science camera and piezo scanners to measure and correct the OPDs. Preliminary analysis on an extension of this 
algorithm indicates a potential for predictive tracking, although at present, real-time implementation of this extension 
would require significantly more computational capacity. 
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1. INTRODUCTION 
 
The Infrared Optical Telescope Array (IOTA), shown in 
Figure 1, is a 3-aperture long baseline Michelson stellar 
interferometer located on Mt. Hopkins near Tucson, 
Arizona. Three 45-cm collectors can be located along a 15 
m by 35 m L-shaped array, supplying visible and near-IR 
light to pupil-plane beam combiners. The operational 
details and scientific accomplishments of IOTA have been 
well documented by other authors1,2,3. 
 
This article reports on the development of algorithms 
designed and used to simultaneously null the optical path 
differences (OPDs) for the three baselines provided by 
IOTA’s three apertures. Examples of fringes with relatively 
higher (on the left) and low (on the right) signal-to-noise 
ratios (SNRs) are shown below. These scans were taken on 
the same delay line, about 2 seconds apart. The relative 
confidence in the fringe center identification is indicated as 
the number on the plot, and will be discussed later. Significan
vibration, photon noise, and detector noise. The goal of the fri
cophasing), by controlling the OPD to allow the interferogram to 
and fainter objects. The controller works by identifying the fring
each scan, and then adjusting the centers-of-travel of the piezo-d
packets centered in all 3 scan windows. 
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Figure 1: Infrared-Optical Telescope Array (IOTA)
t sources of noise include atmospheric turbulence, 
nge tracking system is to perform coherencing (vs. 
be captured in the presence of bad seeing conditions, 
e-center locations on all 3 interferograms following 

riven scanning mirrors, attempting to keep the fringe 
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 Figure 2: typical IOTA scan with low SNR Figure 3: typical IOTA scan with higher SNR 

Details of the relevant interferometric derivations is covered thoroughly by other authors4,5. The idealized fringe packet 
function is a sinc function multiplied by a sinusoid, and can be represented with Equation 1, where  is the normalized 
intensity, 

y
x  is the sample number, and  are parameters defining respectively the amplitude, sinc-

function width, sinc function center, sinusoid (fringe) frequency, and sinusoid phase shift. Many equivalent variants on 
this functional form are of course possible (for example, substituting sin(

, , , ,A B C D E

)dx e+  for ); this one was 
chosen to facilitate the particular gradient-based optimization procedure developed. Although 

cos( ( ))D x E+
E  is not an independent 

variable in theory, in practice, noise and atmospheric disturbances make it independent of the other parameters. 
  (1) sinc( ( )) cos( ( ))y A B x C D x E= + +
 
Figure 4 shows an idealized packet with 
parameters chosen to approximate that from the 
higher-SNR real-data fringe shown previously. 
The computing and actuation aspects of the 
control system are described by Traub and 
Pedretti2,5; the present article details the fringe 
tracking algorithm and aspects of its software 
implementation. 
 
Due to the significant noise sources present, the 
fringe tracking algorithms developed here were 
developed through extensive testing on actual data 
sets from IOTA, dating back to 1997 (as opposed 
to working with simulated data). The algorithms 
were developed with autonomous adaptability 
(due to widely varying seeing conditions and 
object intensities), robustness (absolute accuracy 
is not as important as keeping the fringe within the 
scan window), and computational efficiency (requiring a 
minimal amount of computation time due to the limited 
resources and need for fast scanning–typically 3 Hz). 
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Figure 4: Idealized interferogram with sinc envelopes



Interferometric fringe tracking is a broad field, so this section will focus on fringe tracking developments at IOTA. 
 
Wilson developed a method, summarized in this paper, that used the envelope of the interferogram to identify the packet 
center, and a gradient-based optimization method for refinement of this estimate6. Although fast and robust, it did not 
make use of the fringe frequency, leading to the present research which makes this improvement. This was an off-line 
study using IOTA data taken in 1997. 
 
Morel and others on the IOTA team worked to implement the core aspect of Wilson’s 1999 algorithm on the IOTA 
scanning hardware7. The fringe-center identification aspect of the system was found to be very robust and accurate even 
with very noisy signals, but the slow response of the control communications and actuation hardware made the overall 
control system ineffective. The control computing, communications, and actuation hardware was subsequently upgraded 
to permit further implementation efforts2. 
 
Pedretti developed a fringe tracking algorithm taking a completely different approach, based on double Fourier 
interferometry (DFI)5,8. This method calculates the group delay of fringes dispersed with DFI, which is used to obtain 
the wavelength dependent phase from the fringe packet. This method has also been implemented at IOTA on the current 
hardware, and is used there regularly. A performance comparison of the different approaches at IOTA is presently 
underway. 
 
Thureau developed a fringe envelope tracking algorithm at COAST, which was subsequently implemented for testing at 
IOTA9. 

1.2. Approach 
Guided by a background in signal processing and system identification (ID), the original approach taken towards fringe 
tracking was to fit the parameters in Equation 1 to the data on each scan, with the fringe center then contained in . A 
nonlinear, gradient-based optimization was developed to perform this, with extensive testing and tuning on 
representative IOTA data sets from 1997. This nonlinear optimization required a reasonably close initial estimate for 

, which was provided by processing the fringe packet envelope. As it turned out, the accuracy of this initial estimate 
was generally within a sample or two (out of 256 points in a scan, typically) of the result following the full nonlinear 
ID. Given implementation constraints and the existence of other more significant error sources, it was decided that this 
initial estimate processing could serve as the on-line fringe ID algorithm. This was tested on-line in 1999 and 20007. 

C

C

 
In 2002, following the instrument control hardware upgrades and in preparation for a second implementation attempt, 
the algorithm was updated. The original envelope-based algorithm basically drew an envelope around the data and 
found the hump, thereby completely ignoring the fringe frequency, . As can be seen in the example data given 
previously, the fringe frequency is visible in the fringe packet, and is relatively obscured by noise outside the center 
(although it is still there). The improvement looks for intensity amplitude at the fringe frequency, rather than at all 
frequencies (as the envelope-based ID did). This is accomplished with an efficiently implemented sliding window 
discrete Fourier transform (DFT). This updated algorithm was implemented in February 2002 at IOTA, with testing on 
simulated fringes through the instrument, and later on-the-sky testing with all 3 apertures in May 2002. Being more 
physically based, the change was made with the expectation that it would be more robust for future data and algorithm 
changes. 

D

1.3. Article overview 
The DFT- and envelope-based tracking algorithms, both of which are concise enough to implement on the real-time 
system, are presented in Sections 2 and 3. A gradient-based optimization algorithm to identify all fringe packet 
parameters ( , , , ,A B C D E ) from Equation 1 is developed in Section 4. Initial proof-of-concept results for using these 
identification results for fringe motion prediction are presented in Section 5. Implementation issues and conclusions are 
presented in Sections 6, and 7. 
 

2. DFT-BASED TRACKING 
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A more detailed description of the algorithm specifics is described elsewhere by Wilson10. 

2.1. Algorithm summary 
1. A window (nominally of a length containing two fringe periods, but can be set to any integer) is passed over 

the data, where a single-frequency discrete Fourier transform (DFT) is calculated to try to detect the expected 
fringe frequency (this frequency is adaptively updated–by changing the window size–after each scan). The 
DFT is calculated 5 times for each scan, using window sizes of nominal plus [-4, -2, 0, +2, +4]. The number of 
points in the window is odd so the center lands on a point. The relative scaled magnitudes of these DFT results 
are used to determine the nominal window size for the next scan. 

2. Each of the 5 DFT results is smoothed using a rectangular averaging filter. 
3. The point-by-point maximum of the 5 smoothed DFT results, referred to as the composite DFT result, is taken 

for further processing. Steps 1, 2, and 3 make this result more robust to intra-packet fringe frequency variations 
than a single-frequency DFT scan would be. The frequency corresponding to the largest DFT magnitude is 
chosen as the nominal frequency for the following scan–providing adaptive response to changing interferogram 
properties, and eliminating the need to initially set this carefully. 

4. A fringe-packet-finding template is convolved with the composite DFT result, providing a peak when the 
composite DFT result matches the template shape. For computational efficiency, a rectangular template is used 
in place of a sinc-shaped template. 

5. The sample corresponding to the maximum value of the previous step is used as the identified fringe-packet 
center. 

6. A confidence metric is calculated based on the relative magnitudes of the composite DFT result near the ID’ed 
center and the background. 

7. The previous steps are performed on all aperture pairs (3 in the case of IOTA), and the ID results and 
corresponding confidence metrics are combined to determine the scan centers for the next scan (to begin within 
a couple of milliseconds). 

2.2. Algorithm steps illustrated on example data 
The algorithm steps are presented using actual data, as shown in the following figures. They were generated using data 
collected from the AB-fringe of the 6th scan of the iota4 dataset on April 28, 2002; targeting star 12Iot_Dra; RA 
(J2000): 15.415278; Dec (J2000): 58.966111. Figure 5 shows the normalized raw data, as well as the result of the center 
identification that came after all steps were completed. 
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 Figure 5: Normalized raw data  Figure 6: DFT sliding window 

Figure 6 shows how the DFT window is passed over the raw data. The purpose of the DFT is to locate areas in the scan 
where the expected fringe frequency is present. A few things are done to greatly improve the efficiency of the DFT 
calculation–note it is not calculated as an FFT. This DFT calculates the magnitude of the signal in only one frequency 
bin–that corresponding to the fringe frequency. Also, a rectangular window is used, which enables very fast 
computation as the window is passed over the data. Calculating each new data point requires adding a term for the 
incoming sample and subtracting a term for the leaving sample. So for example, to calculate the DFT for the fringe 
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frequency centered at sample #89 in the figure uses the DFT result for sample #88, then adds a term for point #97 and 
subtracts a term for point #81. 
 
The DFT window size is chosen in this case to nominally contain exactly two fringe wavelengths. Two wavelengths 
appears to be a good compromise between accuracy on clean scans (with higher coherence time, more accuracy would 
be possible with a larger window, but on clean scans tracking accuracy is not difficult) and noisy scans (if the coherence 
time is much below two wavelengths, there are probably no fringes to be seen). 
 
For calculation of the DFT over the full spectrum, the first component (“bin”) would correspond to the overall bias, the 
second component would correspond to a full wavelength extending across the full window, and the third component 
would correspond to two full wavelengths. Since the window size was chosen to cover two full fringe wavelengths, we 
calculate only the third component of the full-spectrum DFT. The real and imaginary parts are computed and then 
combined to produce the magnitude. The phase information is not used. This result is then smoothed using a sliding 
window having the same width as the DFT window (two wavelengths in this case), with the mean over the window 
producing the result shown in Figure 7. This step is computationally efficient, and reduces the variability in the DFT 
results. Even though it is calculated very differently, the result is very similar to that resulting from the envelope-finding 
calculations described in Section 3. Although the envelope-finding calculations provided excellent results, this DFT 
calculation is more physically based and is expected to provide better robustness for noisy signals. 
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 Figure 7: Smoothed DFT result Figure 8: Multiple smoothed DFT results  

Figure 8 summarizes the results of the smoothed DFT calculations using five different window sizes. Since the fringe 
frequency is not known exactly, and may change, this algorithm adapts to use the best window size. For every scan, the 
smoothed DFT calculations discussed above run five times: once for the window size used on the previous scan, once 
each for 2 and 4 samples larger, and once each for 2 and 4 smaller. The window size (nDft, as shown in the plot legend, 
is the number of samples) corresponding to the maximum smoothed DFT value (in this case, the highest DFT result 
occurs for nDft = 15 at sample #79) is chosen and carried through to the next scan as the nominal window size. To 
prevent nDft from increasing or decreasing too rapidly during periods of low signal-to-noise ratio, only one step up or 
down is permitted per scan. 
 
The “composite DFT result” is formed by taking a point-by-point maximum over the 5 smoothed DFT results. This is 
the vector that is passed on for further processing. The smoothed DFT results (shown in Figure 8) are compensated 
based on the window size to allow meaningful comparison among the different results at each point. As can be seen by 
the 5 individual curves here, the composite DFT result is more representative of the fringe packet than any single 
smoothed DFT result would be. This is due to the intra-packet variations in fringe frequency, caused primarily by 
atmospheric distortion. 
 

 5 



0 50 100 150 200 250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sample number []

N
or

m
al

iz
ed

 D
FT

 m
ag

ni
tu

de
 []

Packet-finding template is convolved over DFT result, shown here at packet center

DFT result
Template
identified center

0 50 100 150 200 2500

0.05

0.1

0.15

0.2

0.25

0.3

0.35

sample number []

co
nv

ol
ve

d 
D

FT
 m

ag
ni

tu
de

 []

Result of convolution of Packet-finding template with DFT result

template convolution result
identified center

 
Figure 9: Composite DFT result before (left) and after (right) convolution with packet-finding window 

Figure 9 illustrates how a template is convolved with the composite DFT result. The template is very simple, composed 
of ones and zeros, leading to very efficient computation:  additions and subtractions at the template transitions only, as 
the template is passed over the composite DFT result–as opposed to an arbitrary convolution, which would require 
multiplications across the full template, repeated when centered at each point in the scan window. The template is very 
loosely modeled after what the ideal DFT result should look like (abs(sinc)-like). The computation is efficient, since 
after the initial computation for the first sample, each additional sample calculation involves only one add and one 
subtract (no multiplies or divides)–corresponding to the two vertical edges on the template. The +1 region is chosen to 
correspond approximately to the width at half the composite DFT result. The software implementation allows this width 
to be set easily, and an extension to make it adaptive should be feasible, although performance appears to be very robust 
to this number. For example, a value of nFringe = 35 for the half-width (meaning the template spans 71 samples) was 
used to successfully track simulated fringes at IOTA with the scan set to both 30 and 15 microns (the 15-micron scan 
had a fringe packet twice as wide as that of the 30-micron scan). The index corresponding to the maximum value of this 
result is used as the packet center estimate. 

2.3. Confidence metric calculation 
 
Once the fringe packet center has been 
identified, a decision must be made as to the 
result’s level of validity of and degree to 
which it should be used to update the scan-
center position. In cases where the fringe 
packet disappears momentarily, it is better to 
do nothing (keep scanning in the same 
location) than to chase the noise. 
 
This calculation is shown graphically in 
Figure 10. The concept is that the DFT 
calculation near the identified center should 
have a measurably higher value than the DFT 
calculation on the background noise. The 
mean of the DFT in windows spanning 20% of the scan 
width is calculated at the left edge, right edge, and at the 
identified center–as shown by the blue rectangles in the figure. 
smaller of the two edge measurements (minus one) is taken as t
then use the minimum is that this will give a valid background
scan.  
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One approach to using this confidence metric would be discrete
result based on that comparison. Setting the threshold value w
relative scan width, and other factors. It is a balance between the
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Figure 10: DFT-based confidence metric
The ratio of the mean DFT at the identified center to the 
he confidence metric. The reason to take both edges and 
 measurement even if the fringe falls at the edge of the 

: set a confidence threshold and either use or ignore the 
ill depend on the level of tracking accuracy desired, the 
 cost of accepting a wrong estimate and ignoring a valid 



one–these costs vary depending on the application. Some additional complications with this method are raised when 
considering multi-aperture interferometry, where changing the scan center on a single delay line affects two 
interferograms. 

2.4. Three-scan tracking 
When the third telescope at IOTA went on-line in February 2002 and 3-scans became available for tracking, the 
approach taken was to try to estimate the fringe center (related to OPD) for each of the three scans independently (as if 
only two telescopes were present), then to combine these results, along with the corresponding confidence estimate for 
each result, into the updated scan centers for the next scan. Ettore Pedretti at IOTA had already developed an algorithm 
to optimally merge the individual fringe center IDs, along with corresponding confidence estimates5. This algorithm 
was used directly. 

2.5. Optional operations 
Non-rectangular template. If the approximate width 
of the sinc function is known, a template of such a 
shape could be used in place of the rectangular 
template used in Section 2.5. A simpler version that 
is far more computationally efficient than a sinc-
shaped template, and only slightly less efficient than 
the rectangular template, would have 3 rectangular 
regions as shown in Figure 11. This was used as part 
of the implementation in February 2002, but was 
later changed (to the rectangular) since distortion due 
to edge effects was found to occur more frequently 
than expected due to the narrower scan width. 
However, it should be considered a viable option. 
 
In summary, switching to such a non-rectangular 
template would produce a negligible increase in 
computation time (both are extremely efficient), provide 
slightly better ID accuracy for fringe packets away from t
performance for fringe packets at or near the edge of the scan
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Symmetry checking. The interferogram should ideally b
contained a step that would calculate the symmetry and w
virtually all other signal processing steps, the symmetry 
efficiency, and ended up taking about double the processing 
encountered with edge-effects; distortion would result whe
partially off the scan window. The symmetry calculation wa
was centered, but the combined issues of compute time and e
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Figure 11: Non-rectangular packet-finding template
he ends of the scan, but possibly significantly worse ID 
 window. 

e symmetric about its center. The algorithm originally 
eight the DFT (or envelope) result accordingly. Unlike 
calculation could not be implemented with exceptional 
time of all other operations combined. Problems were also 
n trying to calculate the symmetry when the fringe was 

s useful for gaining slightly more accuracy when the fringe 
dge distortion led to its removal. 
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The above sequence shows how the symmetry checking step was applied. The leftmost plot shows the output of the 
convolution of the packet-finding template with the composite DFT result. The middle plot shows the symmetry 
calculation (lower number means more symmetric). The rightmost plot combines the two, dividing the left result by the 
middle. The index corresponding to the maximum value of this result is used as the packet center estimate. This 
sequence illustrates the sharpening possible with this symmetry calculation. 
 
Single frequency DFT. If the fringe frequency across the interferogram is consistent, then a single-frequency DFT can 
be used, rather than the combination of 5, as is presently used. Since the DFT calculation comprises the bulk of the 
computation, this would create close to a 5-fold decrease in compute time. However, it is unlikely that that would be a 
good tradeoff. 
 

3. ENVELOPE-BASED TRACKING 
 
The fringe-tracking algorithm developed in 1998-1999 and implemented in 1999-2000 used a different approach, which 
should still be considered as a viable option6,7. Developed and tested using about 4000 scans taken at IOTA in 1997, 
that algorithm was able to automatically identify fringe packet parameters to accuracy as good as could be determined 
by eye. That is, the identified fringe packet parameters (amplitude, spread of sinc function, center, frequency of fringes, 
and phase shift of fringes–or , , , ,A B C D E  from Equation 1) following envelope-based initialization and gradient 
based optimization appeared to be the “best” match to the actual data. 
 

Step 1. Data sets from each of the two collectors are combined, for example using 
channelA channelBy
channelA channelB

−
=

+
. 

Step 2. Outliers are removed 
Step 3. Local bias is removed using a high-pass filter 
Step 4. The envelope of the absolute value of the signal is calculated, eliminating the individual fringes. In the 

case of no noise, this envelope would have the form abs(sinc( ( ))y A B x C= + . 
Step 5. A packet-finding template as described in Section 2.9 is convolved with this result. 
Step 6. The initial estimate for the C  is found by maximizing weighted symmetry over this result. 

 
Gradient-based optimization, described Section 4, refines this  estimate, and identifies the other four interferogram 
parameters. A fringe tracker using steps 1, 3, 4, 5, and 6 was implemented at IOTA7. Morel converted the MATLAB 
code to C, then to Labview for implementation and integration with the other control system components. 

C

 

4. GRADIENT-BASED OPTIMIZATION OF ALL FRINGE PARAMETERS 
 
Following the use of either the DFT- or envelope-based algorithms to get an initial estimate of C , the remaining steps 
in identifying  use an FFT and nonlinear gradient-based optimization. These steps take about 200-600% 
longer to compute, and produce only a small improvement in fringe-packet-center identification. For the 4000-scan 
1997 data set, the maximum difference between initial and final estimates for C  over all the data was 1.6 samples; 
standard deviation was 0.5 samples.  

, , , ,A B C D E

 
The improvement in center-estimation alone probably does not warrant implementing the full estimation of 

, since the random motion of the fringe packet center is roughly 20 times larger than this improvement. 
However, these additional parameters have been found to contain information useful for fringe-packet-motion 
prediction–initial tests show that past and present values of fringe frequency, , are useful for predicting future values 
of interferogram center, C . 

, , , ,A B C D E

D
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For consistency with the steps described in Section 3, step numbering begins where that ended. 
Step 7. Using the initial estimate of , and using an initial guess for C B  (sinc width), the remaining parameter 

describing the sinc envelope, A , is found by a least squares fit to the envelope found in step 4 of Section 
3. This is a direct calculation. 

Step 8. With , ,A B C
, ,

 now having good initial estimates, an iterative gradient-based optimization is performed to 
find the A B C  that minimize the squared error with respect to the envelope data. 

Step 9. Fringe parameters,  and D E , are found by fitting the ideal fringe function from Equation 1 to the data 
(following bias outlier and bias removal, Step 3 of Section 3) over the center of the fringe packet (half 
height of the sinc function determines the center region). An FFT taken over this packet center region 
provides initial guesses for  and D E , and an iterative gradient-based optimization then finds , 
with 

, ,C D E
A  and B  held fixed. 

 
Simultaneous gradient-based optimization of  was 
attempted, but did not work as well on the noisy data as the 
sequential procedure (  then ) listed above. One 
example of a cause of this difficulty is shown in Figure 13. Half-
way through the fringe-packet scan, a sudden phase shift was 
encountered. If all 5 parameters were adapted simultaneously, the 
result would be a flat line, with , since the identification 
would be unable to lock onto the left and right halves of the fringe 
packet. Squared error would be minimized approximately by a flat 
line, . With the present algorithm, two parameters 
representing the sinc function envelope (  and 

, , , ,A B C D E

E, ,A B C , ,C D

0=

A

A

0A =
B ) were held 

fixed while the fringe frequency and phase shift (  and ) were 
identified. The identification locked onto the right half of the 
fringe packet since that resulted in a better fit than the left half. The figure shows the raw data, along with ID’ed sinc-
function envelope and ID’ed full sinc-sinusoid function. 

D E Figure 13: Example of significant intra-packet shift 

 
It should be possible to calculate the gradient directly, rather than by perturbation (as is presently done). The 
perturbation calculation is not very inefficient here since there are only 3 parameters at a time being calculated (ABC or 
CDE). The main benefit from using a backpropagation-based gradient calculation is that computations do not increase 
linearly with the number of parameters. To do this, there would be a slight problem due to the absolute value function 
present in the calculation of A, B, C (since abs() is not continuously differentiable). This may be addressed by focusing 
only on the main packet, so the abs() could effectively be dropped from the equation. 
 

5. PREDICTION OF FRINGE-MOTION 
 
Initial, proof-of-concept experiments with fringe packet motion prediction were performed. An adaptive linear model 
using present and past identified fringe parameters was developed as a first step. The center of the next fringe packet 
and the magnitude of fringe-packet-center motion were predicted, with the goal of optimizing on-line the parameters 
(e.g., travel limits and rate) of the next scan. This model produced approximately 5% (and as high as 10%) improvement 
over no prediction (i.e., the baseline case of predicting that the fringe packet will remain where it is on the next scan). 
Extension to nonlinear prediction methods, including neural networks is under investigation. 
 
In the data analysis that follows, different combinations of identified parameters were used, along with the changes in 
those parameters, to predict the change in interferogram center and the absolute value of the change. A least-squares 
linear predictor was used for each set of input parameters. To measure the prediction performance as expected on new 
data, vs. as fit to the training data, the results of each linear predictor were evaluated by testing on a segment of the data 
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that was not used during model development (test data vs. training data). This cross-validation procedure is common in 
model building and other machine learning applications. 
 
The results of the prediction were compared against a baseline case that:  (1) predicted no motion - that the 
interferogram would stay where it was, and (2) predicted that the absolute value of the motion would equal the RMS of 
all motion detected so far on that target. The percentage improvement as compared to these baselines is printed in the 
following table, which has each of 9 data sets from 1997 in rows (there are 8 ~500 point data sets, and the 9th set is all 8 
combined), and each of the 8 input parameter combinations tested in columns. 
 

            col1   col2   col3   col4   col5   col6   col7   col8  | [Mean] 
Data set 0  7.507  7.854  7.765  6.521  3.889  6.680  4.097  6.489 |  6.350 
Data set 2  8.939  9.978  9.550 10.232  6.238  6.826  4.961  6.272 |  7.874 
Data set 3  5.267  4.787  4.717  4.959 -0.818  5.280  4.673  2.829 |  3.962 
Data set 5  2.312  2.786  3.883  3.583  3.556  3.841  2.804  2.739 |  3.188 
Data set 6  7.506  7.581  7.453  7.502  3.026  4.301  6.893  2.850 |  5.889 
Data set 7  0.778 -0.149  0.836  1.832  0.637  1.790  2.566 -0.279 |  1.001 
Data set 8 -0.102  2.864  3.118  3.067 -0.350  3.017  3.861  2.768 |  2.280 
Data set10  0.841  2.403  0.890  0.880  0.511  1.954  0.674  1.270 |  1.178 
Data set11  2.940  2.675  3.081  3.074  1.476  2.953  2.931  1.259 |  2.548 
           --------------------------------------------------------- 
[Mean]      3.998  4.531  4.588  4.628  2.018  4.071  3.718  2.911 
 
Variables used in prediction  [y = A * sinc(B(x+C)) .* cos(D(x+E))]: 
col 1 :  A  B  C  D  E  A_delta  B_delta  C_delta  D_delta  ones_n_1 
col 2 :        C  D              B_delta  C_delta  D_delta  ones_n_1 
col 3 :        C  D              B_delta  C_delta           ones_n_1 
col 4 :        C  D                       C_delta           ones_n_1 
col 5 :           D                       C_delta           ones_n_1 
col 6 :        C                          C_delta           ones_n_1 
col 7 :        C  D                                         ones_n_1 
col 8 :        C  D                       C_delta 

 

6. IMPLEMENTATION AT IOTA 
 
Since the tracker needs to run on a real-time processor (VxWorks operating system on a Motorola PowerPC 604 
processor on a MVME-2431 card), after the initial development and prototyping in MATLAB, the algorithm was 
converted (manually) to ANSI C. As the algorithm evolved during this implementation process, the MATLAB and C 
versions were continually updated to maintain the same variable names, function names, and structure to the extent 
possible. The two versions produce results that are identical when compared to the limit of floating point precision (6 
digits). 
 
A test function was developed in both C and MATLAB that generated an idealized scan for testing the algorithm. This 
arrangement proved useful in determining whether a problem was in the interface between the calling function , the 
implementation of the C-version of the function, or the algorithm itself (in which case a problem would be detected 
when running in MATLAB). This development arrangement will enable off-line data analysis and facilitate further 
algorithm improvements. 
 
The C code is compiled using WindRiver Tornado, which uses the gcc and g++ compilers to create a .out file that is 
then loaded onto the VxWorks target at run-time. Variables that may need to be changed, such as nFringe, nDft, and 
threshold_ratio, are passed as inputs to this function so that there should not be a need to recompile the fringe-tracking 
code if these parameters must be updated for different observing conditions. These parameters can be set through an 
IDL interface, enabling them to be changed easily during a run. 
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6.1. Testing 
Initial testing was performed during February 2002 on the IOTA system, tracking fringes generated by a light source. 
Tracking performance was very good, even with temporary loss of fringe data (for example, caused by banging the 
table)–in these cases, the system correctly decided that confidence was low and did not try to track until the fringe 
packet re-formed. Also, the system performed very well with the scan travel set at both 15 and 30 microns, and with no 
manual adjustment of parameters. The fringe packet appears twice as wide for the 15-micron scan, further indicating the 
robustness of the algorithm. Unfortunately, due to poor weather conditions, we were unable to test it on the sky. 
 
When initially implemented, some overshoot was noticed when the fringe tracking was active. This was effectively 
addressed by implementing a gain of 0.7 in the control loop. So instead of commanding a motion to move to the 
identified center location, the system moves 70% of that distance. 

6.2. Speed 
The following results were obtained by running the function for 10,000 or 100,000 times and measuring the total 
elapsed time, and allowing for a calibrated conversion between the PC used for testing and the real-time processor. The 
algorithm generated an ideal fringe packet (time to compute this is included) and then identified the center. Running the 
full algorithm presented in Section 2 took 0.67 milliseconds per cycle on the PowerPC. Including all three 
interferograms for each scan, the total compute time is 2.0 milliseconds, which is fast enough to be used. 
 

% of time time [ms] Algorithm step(s) 
75% 0.50 4 extra DFT calculations for window size adaptation 
19% 0.13 Required DFT calculation 
6% 0.04 Everything else (template, confidence, etc.) 

100% 0.67 Total time per interferogram per scan 
 

7. CONCLUSIONS 
 
Interferogram center ID works very well on the data sets tested so far, including the 1997 data, data generated by a light 
source using the IOTA configuration as of Feb 2002, and actual on-the-sky fringes from 2002 and 2004. The fringe-
center estimate provided by the Adaptive DFT-based or envelope-based algorithms is sufficiently accurate for fringe 
tracking. That is, the initial estimate of C in the equation y = A sinc(B(x+C)) cos(D(x+E)) is sufficient, and full 
nonlinear estimation of A, B, C, D, E provides only marginal improvement. The adaptive nature of the DFT-based 
algorithm virtually eliminates the need to set any target-dependent parameters, and provides robust tracking in the 
presence of significant atmospheric distortion. 
 
On-line implementation of this algorithm at IOTA was completed in May 2002, using all three telescopes. Compute 
time for all three interferograms is estimated to be 2.0 ms. Fringe tracking was considered successful, but no 
quantitative results have yet been derived from these tests. 
 
Prediction of interferogram motion using adaptive linear predictors appears feasible to a small extent, but major effort in 
this area may not be warranted since the payoff appears small relative to that achievable through fringe tracking control 
(without prediction). 
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